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Abstract--The kinetics of the oxidation of octacyanomolybdate(IV) by nitrous acid has been studied in 
aqueous perchloric acid medium. An equilibrium concentration of the nitrosonium ion, NO +, has been 
proposed as the active oxidizing species. An acid dissociation constant for H[Mo(CN)8] 3-, K, = 0.47 +_ 0.05 M 
at 25°C and I = 1.0 M has been obtained from the kinetic data. © 1997 Elsevier Science Ltd 
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Kinetic studies on nitrous acid have been mainly con- 
cerned with nitrosation reactions in the older litera- 
ture [1]. It was evident that a protonation step (eq. 
(1)) is a prerequisite for nitrosation of substrates (S) 
which is controlled by the rate law in eq. (2). 

HN02 + H  + ~ H z O + N 0  + (1) 

Rate = k[SI[HNO2I[H+]. (2) 

The same rate equation also seems to hold for the 
oxidation of a number of inorganic complexes by 
nitrous acid. Iridium(Ill)  is oxidized by nitrous acid 
to an equilibrium with Ir ~v (eq. (3)) with a rate law [2] 
for the forward reaction which 

IrCl~- +HNO2 + H  + ~-IrC162- + N O + H 2 0  (3) 

corresponds to eq. (2). A mechanistic investigation 
has revealed that a similar rate law applies to the redox 
indicator behavior of ferrocyphen, [Fe(phen)z(CN)2], 
for nitrite titrations at low acidities [3]. The latter 
reactions were all considered as rate-limiting 
diffusion-controlled electron transfers from the sub- 
strate to NO +, incorporating the prerequisite equi- 
librium (eq. (1)) and a rate determining step (eq. (4)). 

* Author to whom correspondence should be addressed. 

S + NO + ~ products. (4) 

The oxidation of hexacyanoferrate(II) ions (eq. (5)) 

H[Fe(CN)6] 3- + N O  + ~ [Fe(CN)6] 3- + H  + + N O  

(5) 

involves only the monoprotonated form as the active 
participant [4]. The third-order rate constants for the 
latter and the oxidation of IrC163 show reasonable 
correlations with calculated encountered-controlled 
rates [4,5] for the interaction between a tri-negatively 
charged species and NO +. 

Our interest in the nitrous acid oxidation of octa- 
cyanomolybdate(IV) and octacyanotungstate(IV) 
originates from preparative procedures [6] for the 
respective octacyanometalate(V) species using HNO3 
as oxidant. We found that the yields of oxidized prod- 
uct varied according to the ageing and daylight 
exposure of the concentrated nitric acid used. This 
was indicative of nitrous acid, a known photochemical 
decomposition product [7,8] of nitric acid, being the 
active oxidizing agent. Further investigation resulted 
in an improved preparation method [9] using sodium 
nitrite in mineral acid medium as oxidizing agent. A 
kinetic study [10] to this effect has indeed shown that 
H[V~/(CN)8] 3- is more reactive than [W(CN)8] 4- and 
that the rate of this reaction is comparable to that of 
the hexacyanoferrate(II) oxidation. The present kin- 
etic study of the oxidation of the [Mo(CN)8] 4- by 
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HNO2 is complimentary to that of  the octa- 
cyanotungstate(IV) complex which allows com- 
parison of the reaction mechanisms and reactivities. 

EXPERIMENTAL 

Potassium octacyanomolybdate(IV)dihydrate,  
K4[MorV(CN)s] • 2H20, was prepared as described by 
Leipoldt et al. [11] and was used as a primary standard 
[12] after recrystallization. Stock solutions of sodium 
nitrite were freshly prepared daily using a Merck 'Pro 
Analysi '  reagent. A sodium perchlorate solution was 
prepared by neutralizing sodium carbonate with con- 
centrated perchloric acid. The solution was neu- 
tralized to pH = 7, using a sodium hydroxide solution 
and then standardized gravimetrically. All other 
reagents used were analytical grade and redistilled 
water was used throughout. 

The kinetics were followed by stopped-flow spec- 
trophotometry at 390 nm using a Durrum D-110 
instrument. The temperature of reaction mixtures was 
controlled to within 0.1 °C. All experiments were car- 
ried out in perchloric acid medium with [NO~-] a 
tenfold excess relative to [MoW(CN)4-], to obtain 
pseudo-first-order reaction conditions. Reaction mix- 
tures were maintained at constant ionic strength by 
the addition of sodium perchlorate. 

RESULTS AND DISCUSSION 

The oxidation of octacyanomolybdate(IV) by aque- 
ous nitrous acid shows first-order kinetics in 
[Mo w (CN) 4- ] and log(A~-At) vs time plots were lin- 
ear for several half-lives of  the reaction. The results in 
Table 1 show that the reaction is linearly dependent on 
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[ Nm] r and that variation in the initial concentration of 
the product, [MoV(CN)s] 3- have no significant effect 
on the reaction rate. 

Since thepK~ [13] for HNO2 at I =  1.0 M is 3.002 
and the equilibrium constant  [14] for reaction (1) is 
3 × 10- 7 M - 1, the main N m species at the experimental 
acidity conditions is HNO2. For many years there was 
a dispute in the literature as to whether the active 
nitrosating species in aqueous nitrous acid solutions 
was the ni t rous-acidium ion, H2NO~-, or an equi- 
librium concentration of the nitrosonium ion, NO + 
[15]. Anbar  and Taube [16], in their kinetic and iso- 
topic study of the reaction between nitrous acid and 
hydrogen peroxide, produced evidence that the 
ni trosonium ion is the active oxidizing species. 

Kinetic measurements with variation in [H ÷] (Fig. 
1) show the pH dependence of the oxidation of 
[MoIV(CN)8] 4- by nitrous acid. Considering the acid 
dissociation constant  of HNO2 (v. sup.) these results 
could be an indication that two cyanomolybdate spec- 
ies are operative over the pH range studied. 

We have previously shown [10] (see also Fig. 1) that 
H[W(CN)8] 3 (,oK 24= 1.6) is in equilibrium with 
[W(CN)8] 4 and that both species are oxidized by 
nitrous acid in the acidity range employed. A similar 
observation is also valid for the hexacyanoferrate(II) 
oxidation but with the exception that the 
H2[Fe(CN)6] 2 ion was not  active [4]. The results in 
both cases however allowed a kinetic determination 
of the appropriate dissociation constant which cor- 
respond very well with those determined by potent- 
iometric methods. 

Values for the acid dissociation constants of 
H[MoW(CN)s] 3- could however not be found in the 

Table 1. Observed rate constants for the oxidation of octacyanomolybdate(IV) 
by nitrite ions [T = 25.0°C and [H ÷] = 0.20 M (HC104)] 

104[MolV(CN)~ - ] 103[NOr] 104[MoV(CN)~ - ] I(NaC104) kob~ 
M M M M s I 

2.0 4.0 1.0 38.4 
3.0 4.0 1.0 40.2 
4.0 4.0 1.0 39.1 
5.0 4.0 1.0 37.6 
4.0 3.0 1.0 29.7 
4.0 4.0 1.0 39.9 
4.0 5.0 1.0 48.7 
4,0 6.0 1.0 58.2 
4.0 8.0 1.0 77.7 
4.0 10.0 1.0 94.3 
4,0 4.0 1.0 1.0 38.3 
4.0 4.0 2.0 1.0 39.6 
4.0 4.0 3.0 1.0 39.9 
4.0 4.0 4.0 1.0 40.9 
4.0 4.0 0.9 37.7 
4.0 4.0 0.9 37.7 
4.0 4.0 0.7 36.7 
4.0 4.0 0.6 37.3 
4.0 4.0 0.5 36.6 
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Fig. 1. The hydrogen ion dependence for the oxidation of 
octacyanometalate(IV) by nitrous acid. [MW(CN)s 4- 
= 4× 10 -4 M, [NO~-] = 4× l0 -3 M, I =  1.0 M (NaC10+) 

and T = 25.0°C. (WIV(CN)~ - data from ref. [10]). 

A product study with relatively high reactant con- 
centrations, confirmed the product, NO, by the effer- 
vescence of a colourless gas which turned quickly to 
the characteristic brown fumes of NO2 in the atmo- 
sphere directly above the reaction mixture. The pro- 
posed reaction mechanism corresponds with the rate 
law : 

K, K2(k,K~ + k2[H]+ )[H+]2[M'V (CN)~ ]r [Nm]r 
R =  

(K,+ [H] +)(1 +K, [H + ] +K, K2[H+] 2) 

where 

[MW(CN)4-]r = [M(CN)~-] + [HM(CN)~ ] 

and 

[Nm]r = [NO~] + [HNO2] + [NO+]. 

Since K2 << K~ the rate law for the acidity range 
0.6 > [H +] > 0.01 mol dm -3 can be rearranged to 
a form consistent with nucleophilic attack upon the 
nitrosonium ion [15]. 

-d[M(CN)~-]  _ (ktK~+ k2[H + !"~ 

dt \ Ka + [H] + ] 

literature. Although there is a substantial difference 
in the reduction potential [17] of the [MoV(CN)8]3-/ 
[ M  o l V ( C N ) 8 ]  4 -  and [VCV (CN) 8] 3 - / [IvVlV (CN) 8] 4- 

couples their physical and chemical properties 
[18,19,20,21,22] are almost identical. Both these octa- 
cyanometalate(IV) and -(V) ions are spheres with 
the same negative charge and therefore a similar 
effective ion charge must be operative. It has been 
established [21,22] that the metal-nitrogen distance for 
both ions is approximately 3.3 A. This resulted in simi- 
lar ionic radii for these ions. It has also been established 
that hydrogen ions in the direct vicinity of [M(CN)s] 4- 
(M = Mo, W) are stabilized by ion-dipole bonds 
[19,20,21,22]. Coulombic interaction between H + and 
the nitrogens of the CN-ligand are similar for both 
complex ions. Considering the above it is reasonable 
to expect the acid dissociation constant for 
H[Mo(CN)s] 3- to be of the same order of magnitude 
as that for the corresponding tungsten complex. 

From the available data an appropriate reaction 
pathway for the oxidation of [M(CN)s] 4- (M = Mo, 
W) by aqueous nitrous acid could be as proposed in 
the following scheme : 

R" I 
NO;- + H + ~- HNO2 

K2 

HNO2 + H  + ~ -NO + + H 2 0  
kl 

[MW(CN)8] +- + N O  + ~ [MV(CN)8] 3- + N O  

+H++T-H+ K~ 
k2 

H[M'V(CN)8]  3- + N O  + --. [MV(CN)8] 3- + N O + H  +. 

x [M'V(CN)4-lr[N'l'lr. (6) 

A non-linear least squares fit of the hydrogen ion 
dependent data for the [Mo~V(CN)s] 4- reaction as well 
as similar data for the [W~V(CN)s] 4- reaction in our 
previous report [10] (Fig. 1) to rate law (6) yielded 
values for k~, k 2 and K. at I = 1.0 M and T = 25°C 
(Table 2). The value of k 2 corresponds very well with 
the calculated [4] encountered-controlled reaction 
rate for the reaction of triply charged anions such as 
H[Mo(CN)8] 3- and H[VC(CN)s] 3- with the nitroso- 
nium ion, NO +. The Ka values at zero ionic strength 
were calculated by using the Davies equation [23] : 

log K = logK0 +ZaZs[I'/2/I +1u2)_0.3/].  (7) 

As expected, the Ka values obtained from the octa- 
cyanomolybdate(IV) and the octacyanotungstate(IV) 
data, 7.4+0.6 × 10 -2 and 3.54-0.3 × 10 -2 M, respec- 
tively, are of the same order in magnitude. As pre- 
viously reported [10],  the value of Ko for 
H[WIV(CN)s] 3- is in agreement with the value 
reported by Samotus et al. [24]. It is thus reasonable 
to believe that the value obtained from the 
[Mow(CN)s] 4- data is the acid dissociation constant 
for the equilibrium 

H[Mow(CN)8] 3- ~- [MoW(CN)8] 4- + H  +. (8) 

The mechanism for the oxidation of octa- 
cyanomolybdate(IV) and octacyanotungstate(IV) by 
nitrous acid is thus basically the same as those of 
[Fe(CN)6] 4- ,  [Fe(phen)z(CN)2  ] and [IrC16] 3-. For the 
cyano complexes of Fe n, Mo w and W w the mono- 
protonated species are more reactive (Table 2) in the 
order H[W(CN)s] 3 ~ H[Mo(CN)8] 3- > H[Fe(CN)6] 3-. 
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Table 2. Rate and acid dissociation constants for the oxidation of the octacyano- 
molybdate(IV), octacyanotungstate(IV) and hexacyanoferrate(II) complexes by nitrous 

acid IT = 25.0°C and I = 1.0 M (NaC104)] 

H[WW(CN)8] 3 , H[MoW(CN)8] 3- H[Fe"(CN)6] 3 

kl, M-t.s -l 0±3x10 z 0±2×102 
k2, M I.S-I 3.0±0.1X104 3.3±0.2×104 2.6×103b 
~ , M  2.2±0.2x10 1 4.7±0.5x10 -l 
~ , M  3.5±0.3x10 -2 7.4±0.6x10 2 
p ~  1.46±0.04 1.13±0.03 4.17 c 

Recalculated with data from ref. [10]. 
Calculated from ref. [4]. 

c A literature value in ref. [4]. 

In the case of molybdenum and tungsten the depro- 
tonated species react much slower--a situation which 
is reminiscent of alkali metal ion catalysis found for 
several redox reactions of these complexes where ion 
association occurred in the form of a first-order depen- 
dency on alkali metal ion concentrations [22]. We 
thus suggest that the electron flow is facilitated by a 
bridging H ÷ between the cyano ligand and the NO ÷ 
in the transition state as a possible explanation for the 
rate enhancement of k2 over k~. 
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